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ABSTRACT

A Kripke type semantics is given to a large class of tense logics with statabil-
ity operators (including Priors QK.) in such a manner as to obtain their decida-
bility using Rabin’s theorem.

0. Introduction

In this paper we continue our applications of a theorem of M. O. Rabin and
obtain decidability results for various tense and modal systems with statability
operators. We assume familiarity with the methods of Part I of this paper.

Let us now survey briefly the results. Prior [3] considered a system QK, which
is obtained from Lemmon’s K, by adjoining the two unary operators T¢ and Y¢
with suitable axioms. T¢ reads: ¢ is statable in all future possible worlds and
Y¢ reads: ¢ is statable in all past possible worlds. Rennie [5] gave Kripke type
semantics to a modified version of QK,, we shall call his system RK,. Bull [1]
also considered modal systems with statablity operators and propositional quan-
tifiers.

In Section 1 we shall give, using Rennie [5] and our [2] methods, semantics for
Prior’s system QK, and other systems weaker than those considered by Rennie.
Our completeness proofs and semantics shall be given in such a manner as to
enable us to prove decidability later on. In Section 2 we shall describe basic
statability systems in which all other systems can be faithfully interpreted. In
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Section 3 we shall prove, using methods of [4]and [2] that the various systems
considered are decidable.

1. The System SK, and Extensions

We begin by describing the basic system SK,, which is the weakest system we
shall consider. Our language contains, besides the classical connectives the two
tense operators G¢ and H¢ (G¢ reads: ¢ is true in all relevant future possible
worlds and H¢ reads: ¢ is true in all relevant past possible worlds) and the two
statability operators T¢ and Y¢. Before we give the axioms let us remark that
in all the systems considered in this section T¢ (or Y¢) cannot have a truth
value in a world x if ¢ is not statable at x; even though T¢ relates to the statability
of ¢ in the worlds other than x, namely those in the future of x.

2. The System SK,
(1) Classical propositional tautologies and classical rules of inference.

(2) T¢ — Tp where p is a propositional variable occurring in ¢ and similarly
Yo — Yp.

3 (NTp) > T
(A:Yp)—>T¢
where p,--- are all the propositional variables occurring in ¢.

@ ~¢->G~Ho

5) F¢= F Gpand FHo.

6)  T(A:ip)=[G(¢ )~ (G~ GY)]
Y(Aip — [H(¢ = ¥) ~> (Hp > HY)]
where p,--- are all the propositional variables appearing in ¢ and not
in Y.
Prior’s system QK, is the extension of SK, with axiom (7).
(1 ~T¢->H~Té
~Yhp—o G~ Yo

Rennie’s system which we shall call RK, is the extension of SK, with (8).
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® G~@->P)~[Td-Ty]
H~(¢-¢)~[Yo-YY]

If we extend SK, with (7), (8) and (9), we get the system QCR of Rennie jand
Prior, where

©) G¢ - GG, Hp— HH¢.

As we shall see in a later section QCR is complete for transitive world systems
and is decidable.

We shall now, following ideas of Rennie, describe a semantics for SK,, QK,,
RK, and QCR. (The semantics for RK, was given by Rennie [5].)

We firstly define the basic statability structure. Each system will have as its
semantics all structures which are obtained from the basic statability structures
in a certain manner, characteristic to the specific system. The construction of
these structures may seem to the reader unnecessarily complicated, however we
do need it all in the proof that these systems are decidable.

Given a language L a statability structure is a system (4., L,, <, >, R, R>,0)
xe W, 0e W, where W is the set of possible worlds, A, for X e W is a classical
propositional structure built on the denumerable propositional language L.< L,
and <, >, R, and R, are four binary relations on W. We require the following
properties and relations to hold:

(10) If we define xp*y as x < yVx > yVxR_.yVxR.y then (W, p*,0) is a tree
with successor relation p* and root point 0, and for every x e W we have that

0p*"x for some n.

(A1) (x<yVxR.y)=L,21L,
(x> yVxR,y)=L,2 L,

(12) Define: (xp.y) iff (x < yVxRy) and (xp.y) iff (x > yVyRx) where xRy
is (xR .yVyR.Xx).
Let R, R., R, p., p- be the transitive closures of R, R, R, p., p- respectively.
Let xpy be xp.yVyp.x or equivalently (x <y) V (xR.y) V (y>x) V (yR.x)
and let p be the transitive closure of p.

Let (A, L,, Rg, Ry, <1, >y, 0) 0 W, xe W be a structure (with Rg, Ry,
<y, >y binary relations), which is obtained from the statability structure
described above in some way. (Different Logics have different ways: for example,
we may take R; =R efc.)
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We now turn to define for this structure the truth value of a sentence ¢ at a
possible xe W, denoted by [¢]..

(13) For a propositional variable p of our language L we define [p],=1
(truth) if pe L, and A, gives p the value 1 and [p], =0if pe L, and A, gives the
value 0 and [p], is undefined otherwise.

(14) ~ ¢, Gp, Hp, Tp, Y (resp. ¢ Ay are defined iff ¢ (resp ¢ and y) are
defined.

(15) In case the formulae below are defined at x € W then their value at x is
computed as follows:

[¢ Ayl =1iff [¢],=1and [y], =1

[~¢). = 1iff[¢],=0.

[G#], = 1ifffor all y such that xRgy, [¢], = 1 if defined at y.
[H¢], = 1iff for all y such that xRy, [¢], = 1 if defined at y.
[T¢], = 1iff for all y such that x < ry ¢ is defined at y.

[Y$], = 1iff for all y such that x > yy ¢ is defined at y.
¢ is said to hold in the model iff [¢], = 1.

THEOREM 16 (completeness theorem).

(17) SK, is complete for all structures (4,, Ly, Rg, R, <10 > 1 0) xeW,
0e W such that

(a) xRgy iff xRy

(b) xRyy iff yRx

(© x<gyif xpey

(@) x>yyiff xpsy.

(18) QK. is complete for all structures such that

(a) xRgy iff xRy

() xRyy iff yRx

(© x<gyiff Jugu,[(uoR>x) A (WeRtty) A (u1p<¥)]-

u, and u, may be equal to x and y respectively.

(d) x>y iff Jugu,[(WeRox) A (UoRsuy) A (Ups¥)]-

u, and u, may be equal to x and y respectively.

(19) Rennie [5] RQ, is complete for all structures such that

(@ xRy iff xpy

(b) xRyy iff ypx

(€) x<qgyiff xpy
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(d) x>y iff ypx.

(2) QCR is complete for all structures such that

(a) xRgy iff xpy

(b) xRyy iff ypx

(©) x<gpy iff xpy

(d) x>,y iff ypx.

(21) To get semantics for SK, + axiom (9) replace R by R in (17a) and (17b).

(22) To get semantics for RQ, + axiom (7) replace p by p in (19a) and (19b).
Before turning to the proof of the completeness theorem, we need a series of
lemmas.

LemMMA 23. In any structure of (19) we cannot have that xpy A ypz and ¢
is defined at x and z and not defined at y, for any x, y, ze W and a sentence ¢.

PrOOF. Assume that xpy and ypz, then since xpy we have that either
XR.yV x <y in which case by definition L, 2 L,, or yR.xVy > x in which
case L, 2 L,. Similarly for the case of ypz. Now since ¢ is defined at x and not at
y we get that not L, 2 L, and so we must have that xR.y V' x < y holds.

Similarly we get that (since ¢ is defined at z and not at y) L, 2 L, and so we
get that zZR.y ¥V z > y holds. Now since (10) holds we get that in the tree W z is
the predecessor of y, and x is the predecessor of y which is a contradiction.

LemMA 24. In (18c) < may be equivalently defined as x < py iff
Ju(xRu Aup.y) and similarly for (18d) x >y iff Ju(uRx A up.y).

ProoF. Verify that xRy iff Ju[uR.x AuR.y].

Let A be a complete and consistent SK, theory in the language L,, and let
~GpeA. Let Ag be { ~¢} U {l//|G|ﬁeA N L,¢} where Ly¢ is the language

built up from all propositional variables occurring in ¢ or in any Tf € A,

LEMMA 25. A, is SK, consistent.

Proor Otherwise for some Y, -y, we have Fy; A -+ A¥,=¢ (n>0 for
otherwise F¢ and so FG¢ and since GpeL, we get that GpeA!). So
FG(A Y~ ¢).

Now since for each i Gf;eA NL,, we may conclude (by the definition of
Ly, and by axioms (2) and (3)) that Tp;e A, for each p; that occurs in ¥, and
not in ¢.

Since F ATp; = [G(AY;—= )= (G AY; > GP)] we get that G(Ay;— ¢)
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- (G Ay¥; = GP)e A and so since the antecedent is provable we get that G A y;
—-GpeA and since F AGY;»>G AyY;eA we get that GoeA, which is a

contradiction.
This was essentially Rennie’s argument. We now extend A, to a complete

theory A? in the language L,,.
LEMMA 26. L, 2 L.

Proof. This is true by the definition of L,s since GpeA and Gy €A imply
that ¢ and Y eL,.

Lemma 27. Let A be a complete and consistent SK, theory and let A be
constructed as in (25) then if Ty €A then yeL,,.

Proor. By construction.

LemMa 28 Rennie [S]. Let A be a consistent RQ, theory and let ~ T eA.
Let Ag={y|Gy € AN Lo} where Ly, is the language built up from all
propositional variables appearing in any TBeA, then Ay is RQ, consistent
and ¢ € Ly

Proor. This was proved by Rennie.

(29) Since A, is RQ, consistent it can be extended to a complete and consistent
RQ, theory A ) We have that L, 2 Ly

(30) When we deal with the logic SK, and not with an extension, we proceed
as follows:

Let A be a consistent SK, theory and let ~ T¢eA let Ly be the language
built up from the propositional variables that appear in any T¢ for Ty eA.
Let A® be any complete and SK, consistent theory in this language. We have
L, 2 L,s, the proof as in the previous case.

We can similarly construct theories Ay for ~ Hpe A and A for ~ YPeA,
for both cases, A being in SK, theory and A being an RQ, theory.

(31) We are in a position to construct, for a given theory A (either SK, or
QK, etc. theory) a model W which will serve us in the proof of the completeness
theorem. In the sequel we shall speak about consistent theories, it being understood
that all the theories are in some system e.g. SK, or QK etc.

The elements of W are finite sequences of elements of the form ¢ or ¢ or (¢)
or (¢) where ¢ is a sentence of the language. With each xe W there will be
associated a language L, and a complete and consistent theory (in the appropriate
logic) A(x).



Vol. 10, 1971 NON-CLASSICAL LOGIC 141

Let A be given. Let 0 W where 0 is the empty sequence and let Ly = L, and
A(0) = A. We continue our construction by induction. Suppose that for all
sequences x of length < n we know whether xe W or not and that in case xe W
L, and A(x) have been defined. We now give the definitions for sequences of
length n + 1. Let xe W of length n be given. For every ¢ such that ~ G¢ is in
A(x) we construct a theory (A(x))? and the language L x(y)e. We let y =x*(¢>e W
and let A(y) = (A(x))* and L, = Liaxys (see 25). (Where * is concatenation of
sequences).

Similarly for ~ T'¢ € A(x) we form y = x*{(¢)> € W and L, and A(y) = (A(x))m
(see 29, 30).

For the cases of ~ Hp and ~Y¢ € A(x) we form x*(¢) and we let A(x*<¢))
= (A(x)), and similarly for x*{(¢)>. B

Let W be the set of all sequences_ thus defined. Let L, be the respective languages.
Let A, be defined as follows: for pe L, let [p], = 1 iff pe A(x) (p a propositional
variable).

We now define <, >, R, R, as follows:

(32) x<y = iff y = x*{(¢)) for some ¢.

x>y iff y = x*{(¢)) for some ¢.
xR y iff y = x*(<$_> for some ¢.
xR,y iff y = x*(g_S) for some ¢.

LEmmaA 33.

(@ xp*y=L.,2L,

(®) GoeAlx) AxRcy=[deL,=deA(y)].

(€) ToeAlx) N(xRcyVx<y)=del,

(d) The analogues of (b) and (¢) for H and Y.

(¢) In the case that A was a RQ, theory then G¢peA(x) and x < y and
¢eL,= ¢ eA(y). Similarly for H.

Proor. By construction; for (e) see (28).
THEOREM 34. SK, is complete for the semantics described in (17).

Proof. One can easily verify that all SK, theorems hold in this semantics.
Let A be a complete and consistent SK, theory, we shall show it has a model.
Let W be the structure constructed above for A. We prove the following:

(35) [¢].=1iff peA(x); for peL,, and the appropriate Rg, Ry, <1, >y
see (17).
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For propositional ¢ this holds by definition.

Conjunction and negation present no difficulties.

Assume that T'¢ € A(x), then by (33), ¢ is defined in all worlds y such that
x <y or xR.y. Now suppose that yR.y; this means that L,2 L, and so
certainly ¢ is defined at y and so we see that ¢ is defined in all y such that
xp.y.Conversely if ~ T¢e(x) then ¢ is not defined in y where y = x*<(¢)>.

Assume that G¢ e A(x). Let xR_y then if ¢ is defined at y this means that
¢ € A(y) by the construction of any (A(x))* (see Lemma 33). Now let yR,x, this
means that for some ¥ A(x) = (A(y))*. In this case ¢ is certainly defined in L,
since L, =2 L, and ¢ is defined in L,. Now if ~ ¢eA(y) then by the axioms
H ~ G¢ e A(y) and so by (33) for the case of H we get that ~ G¢ e A(x) which is a
contradiction. This shows that if G¢ e A(x) then ¢ € A(y) for all y such that xRy.
Conversely if ~ G¢ € A(x) then ~ ¢peA(y) for y = x*($).

The cases of Y¢ and H¢ can be treated similarly. This concludes the proof
of (35).

THEOREM 36. QK, is complete for the semantics described in (18).

Proor. First let us show that the following holds:

BDxRgy Ay <rz=>X<yZ

XRyy ANy >z =% >rz.

To prove this recall that by (18a) and (24) we have to show that xRy A Ju
(yRu Aup<z)=3v(xRv A\ vp.z)
which is valid. Similarly the other implication holds.

Let us now show that (7) holds in this semantics. Let [ ~ T¢], =1 and
[H~T¢l, =0.

Then for some y such that x <,y we have that ¢ is not defined in y, and for
some z such that zRx we have that [T¢], = 1. Now since we have zZRx A x <y
we get that z <,y which is a contradiction. Similarly the other axiom holds.

Let A be a complete and consistent QK, theory. We want to show that A has a
model in this semantics. To get this we repeat the construction of W as in (31)
and we have to show that (35) holds for the appropriate Rg, Ry, <y, >y (see 18).
To show this all we have to show that if [T¢], =1 and x <y then ¢ is defined at
y (i.e. ¢ €L,). This is proved by induction on the length of the sequence y,--- y,
leading from x to y. (See (24), recall that R is the transitive closure of R). Suppose
that xRy, and (y; <y or y;Ry) and that T¢ € A(x). The latter implies that ¢ is
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defined at y,. If ¢ is not defined at y then ~ T¢ € A(y,) and so by the axiom,
H ~ T¢ e A(y,) and since xRy, holds we get that ~ T'¢ € A(x) which is impossible.

Now assume that xRy, and that y,R" *wuand (u <y or uRy) hold. Let
T¢ € A(x) and assume that ¢ is not defined at A(y). Then by the induction hypot-
hesis ~ TopeA(yy) and so H~ TdeA{yy) and so ~ TopeA(x) which is a
contradiction. Similar lemma holds for the case of > . This completes the proof
of the completeness theorem for QK,.

THEOREM 38 Rennie [5]. RO, is complete for the semantics described in (19).

PrOOF. One can ecasily verify that all the theorems of RQ, hold, To get
completeness we construct, for a given theory A the model W. To prove (35) for
our case we use (33e).

We are now in a position to solve an open problem of Rennie [5], namely the
semantics for QCR.

THEOREM 39. QCR is complete for the semantics described in (20).

Proor. Clearly, for transitive p the axiom holds.

Let A be a consistent and complete QCR theory. We construct the model W
(bearing in mind that RQ, < QCR). To get completeness we have to show that
(35) holds for p. For this we recall lemma 23. To conclude the proof of (35) we
have to show that if xpy and G¢ € A(x) N L, then ¢ € A(y) and similarly for T'¢,
H¢, and Y¢. It is sufficient to show that if xpypz and G¢eA(x)N L, then
¢ € A(z) and similarly for the case of T € A(x).

Assume that ~ ¢ € A(z) then since ¢ e L, N L, by theorem (23) ¢ € L, and so
since Fyer G — GG we get that GG@ e A(x) and so G e A(y) and therefore
deA(z).

Now assume that Ty € A(x) and that ¢ is undefined at L,. So ~ TyeA(y)
and hence H~ Ty e A(y) and therefore ~ T € A(x) which is a contradiction.

This completes the proof of (39).

2, The system S,

In this section we shall describe a basic system with a statability operator S ¢ in
which all other systems are faithfully interpretable. Our language contains besides
the symbols for Lemmon’s K, the unary operator S ¢ which reads: ¢ is statable
right now. We have the following axioms:
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(40) Axioms (1), (4) and (5) of SK, (see section 1).

(41) S¢ — Sp where p is a propositional variable occurring in ¢.

(42) Sp; A--- ASp,— S¢ where p, ---p, are all the propositional variables
occurring in ¢.

43) G(¢ - ¥)—(Go— GY)
H(¢ - ¥) > (Hp —» HY).

Let us now describe the semantics for which S, is complete. An S, structure is a
system (A,, L., R, 0) 0Oe W, xe W where R is a binary relation on W and A4,,
x € W is a classical propositional model in the language ULx. The truth value of
the operators is defined as follows: ¥

(45) ¢ isstableat xiff peL,.
[S¢l.=1iff gL,

For statable G¢ and H¢ we define:
[G4]. = Liff Vy(xRy =[¢], =1)
[Hé], = 11T Vy(yRx =[¢], = 1).

THEOREM 46.

S, is complete for the above semantics.

ProoF. It is easy to verify that all the axioms are valid.

Let A be a consistent and complete S, theory. We want to define a model of A.
To do this we can construct a model W like the one we constructed in section 1.
We shall not go through the details but just give the crucial lemma.

LemMa 47. Let A be a complete and consistent theory and let ~ GpeA.
Let Ay be { ~ ¢} J{¥|GW¥ A}, then A, is consistent.

Proor. Otherwise we have that for some ¥, - ¢,: Fy; A AY,—> ¢ so
FG(AY;— @), and so F A Gy, — Go.

We therefore conclude that G¢ € A which is a contradiction.

A similar lemma holds for the case of H.

Using these two lemmas we can carry out the proofs of the completeness
theorem, along the lines of section 1. The only addition we need is that the language
associated with a theory A(x) (see [31]) is the set of all ¢ such that S¢ e A(x).
The axioms on S ensure that this is a good definition.

The system RQ, may be interpreted in S, as follows:

(48) (p)4 = p for a propositional variable p.
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(6 APy = (D) AWy
(~ P = ~ (P
(G = G(SPy— by)
(Hp)y = H(S¢y—¢4)
(T)x = GS¢y

(Y‘i’)* = HS¢,.
We thus see that in fact S, is more basic.

We now turn to consider modal systems with statability operators. Such
systems were considered by Bull [3] and Segerberg [6]. Both added to the usual
modality operator some statability operator. I would like to show how a system
K, may be constructed with just one modal operator G which has the properties
of a statability operator. First let us describe the semantics of this system.

A structure is a system (4,, L., R, 0) xe W, 0e W where A, is a classical model
n the language L, and R is a binary relation on W, the definition of the truth
table for G is:

(49) [G¢], = 1ifffor all y such that xRy and ¢ is defined at y we have [¢], =1,
and G¢ is defined at x.

As axioms for this logic we may take, in addition to the axioms and rules of the
classical propositional calculus, the following axioms.

(50) +¢ =k Go.

(51) G(¢ »¢¥)—(Gp - Gy) whenever every propositional variable that
occurs in ¢ occurs also in Y.
To prove completeness we need the following result:

(52) Let A be a complete and consistent theory and let ~ Gy € A. Let L,, be
the language built up from all the propositional variables that occur iny, then

{¢|GoeA n Ly JU{~ ¥} is consistent.
ProoF. Otherwise for some ¢,

FAGi—=Y
FG(A ;=)

FG(p = (= - = Y)-)
and so F Gy — (Gpy— - = GY)-+-)
and so Gy € A which is a contradiction
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3. Decidability results

Rather than repeat all the constructions in part 1 [2] we shall assume that the
reader is familiar with [4] and [2]. From the results of [4] it follows that (53)
holds.

THEOREM 53 (Rabin). The monadic second order theory of a denumerable
system of the form (W, <, >, R., R, R, R, p<, p>, P<> P>, 0) is decidable.
Where W is a tree as in section 1,

From the results in [2] it follows that any system whose semantics has an
accessibility relation R;, Rg. <, >y that can be expressed in the above monadic
2nd order theory and is finitely many valued is decidable. Now by theorem (16)
we see that systems have this property. Each propositional variable has as assign-
ment a pair of subsets of W, the set of points at which it is true, and the set of
points at which it is false respectively. The complement of the union of these sets
is the set of all points at which it is undefined.

We therefore conclude.

THEOREM 54 Decidability Theorem. The systems SK,, RK,, QK,, OCR, S,
and the other systems of (16) are decidable and so is K.
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