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ABSTRACT 

A Kripke type semantics is given to a large class of tense logics with statabil- 
ity operators (including Priors QKt) in such a manner as to obtain their decida- 
bility using Rabin's theorem. 

0. Introduction 

In this paper we continue our applications of a theorem of M. O. Rabin and 

obtain decidability results for various tense and modal systems with statability 

operators. We assume familiarity with the methods of Part I of this paper. 

Let us now survey briefly the results. Prior [3] considered a system QK, which 

is obtained from Lemmon's Kt by adjoining the two unary operators Tq5 and Yq~ 

with suitable axioms. T~ reads: ~ is statable in all future possible worlds and 

Yq5 reads: q~ is statable in all past possible worlds. Rennie [53 gave Kripke type 

semantics to a modified version of QK t, we shall call his system RK r Bull 11] 

also considered modal systems with statablity operators and propositional quan- 

tifiers. 

In Section 1 we shall give, using Rennie [-5] and our [2] methods, semantics for 

Prior 's system QKt and other systems weaker than those considered by Rennie. 

Our completeness proofs and semantics shall be given in such a manner as to 

enable us to prove decidability later on. In Section 2 we shall describe basic 

statability systems in which all other systems can be faithfully interpreted. In 
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Section 3 we shall prove, using methods of [41 and [2] that the various systems 

considered are decidable. 

1. The System SKt and Extensions 

We begin by describing the basic system SKt, which is the weakest system we 

shall consider. Our language contains, besides the classical connectives the two 

tense operators G~b and Hq5 (G~b reads: ~b is true in all relevant future possible 

worlds and H~b reads: ~b is true in all relevant past possible worlds) and the two 

statability operators Tq~ and YqS. Before we give the axioms let us remark that 

in all the systems considered in this section Tq5 (or Y~b) cannot have a truth 

value in a world x if ~b is not statable at x; even though T~b relates to the statability 

of q~ in the worlds other than x,  namely those in the future of x.  

2. The System SKt 

(1) Classical propositional tautologies and classical rules of inference. 

(2) T~ ~ Tp where p is a propositional variable occurring in ~b and similarly 

Yp. 

(3) ( A ,Tp) ~ Tqb 

(AiYpi) ~ rq~ 

where Pl"'" are all the propositional variables occurring in qS. 

(4) N ¢ - ~ G ~ H ¢  

~ ¢ o H , , ~ G ( a .  

(5) [- ~b => k Gq~ and [- H~b. 

(6) T( A ~P,) => [-G(¢ ~ ~b) ~ (G~b ~ G~b)] 

where pt.. .  are all the propositional variables appearing in q~ and not 

in ~k. 

Prior's system QK t is the extension of  SKt with axiom (7). 

(7) ,-, T~b ~ H N Tq~ 

Rennie's system which we shall call RK t is the extension of SKi with (8). 
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(8) G ~ (¢ - .  ¢) [ T ¢  

H ,-~ (¢ ~ ¢) --+ [ rt~ ~ Y@]. 

If we extend SKt with (7), (8) and (9), we get the system QCR of Rennie |and 

Prior, where 

(9) C¢ -* GG¢, H e  ~ HH¢ .  

As we shall see in a later section QCR is complete for transitive world systems 

and is decidable. 

We shall now, following ideas of Rennie, describe a semantics for SK~, QK t, 

RK t and QCR. (The semantics for RK, was given by Rennie [5].) 

We firstly define the basic statability structure. Each system will have as its 

semantics all structures which are obtained from the basic statability ~structures 

in a certain manner, characteristic to the specific system. The construction of 

these structures may seem to the reader unnecessarily complicated, however we 

do need it all in the proof  that these systems are decidable. 

Given a language L a statability structure is a system (Ax, Lx, < ,  > ,  R<, R>, 0) 

x ~ W, 0 ~ W, where W is the set of possible worlds, A x for X ~ W is a classical 

propositional structure built on the denumerable propositional language L x _  L, 

and < ,  > ,  R< and R> are four binary relations on W. We require the following 

properties and relations to hold: 

(10) If we define xp*y as x < yVx > yVxR<yVxR>y then (W,p*,0) is a tree 

with successor relation p* and root point 0, and for every x ~ W we have that 

Op*nx for some n. 

(11) (x < yVxR<y)=~ L~ ~_ Ly 

(x > yVxR>y) ~ L~ D_ Ly. 

(12) Define: (xp<y) iff (x < yVxRy) and (xp>y) iff (x > yVyRx) where xRy 

is (xR<yVyR>x). 

Let R<, R>, R, p<, t5> be the transitive closures of R<, R>, R, p<, p> respectively. 

Let xpy be xp<yVyp>x or equivalently (x < y) V (xR<y) V ( y >  x) V (yR>x) 

and let ~ be the transitive closure of p. 

Let (A~, L~, RG, RH, <T, > r, 0) 0 e W, x ~ W be a structure (with RG, RA, 

< r ,  > r  binary relations), which is obtained from the statability structure 

described above in some way. (Different Logics have different ways: for example, 

we may take Ro = R etc.) 
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We now turn to define for this structure the truth value of a sentence ¢ at a 

possible x ~ W, denoted by [¢]x. 

(13) For a propositional variable p of our language L we define [p]x= 1 

(truth) if p e L~ and Ax gives p the value 1 and [-p]~ = 0 if p ~ L~ and A~ gives the 

value 0 and [P']x is undefined otherwise. 

(14) ,-~ ~b, G~b, He, T¢, Y¢ (resp. ~b A ~k are defined iff ¢ (resp ¢ and ~k) are 

defined. 

(15) In case the formulae below are defined at x e W then their value at x is 

computed as follows: 

F¢ A ~bJx = 1 iff [¢]x = 1 and [~]~ = 1. 

[ ~ ¢ ] ~  = l i f f [ ¢ ] ~ = 0 .  

EG~b]x = 1 iff for all y such that xRGy, E¢]y = 1 if defined at y. 

[H~b]x = 1 iff for all y such that xR•y, E~b]~ = 1 if defined at y. 

[T~b]~ = 1 iff for all y such that x < rY ~b is defined at y. 

[Y¢]:, = 1 iff for all y such that x > rY¢ is defined at y. 

q5 is said to hold in the model iff [~b]o = 1. 

THEOREM 16 (completeness theorem). 

(17) SKt is complete for all structures (A,, Lx, RG, Rn, < r ,  > r, 0) x e W, 

0 e W such that 

(a) x R j  iff xRy 
(b) xRny iff yRx 
(c) X < r y i f f x p < y  

(d) x > r y i f f  xp>y. 

(18) QK: is complete for all structures such that 

(a) x R j  iff xRy 
(b) xRny iff yRx 
(c) x <rY iff3UoUl[(UoR> x) A (Uo/~<ul) A (ulp<Y)]. 
Uo and ul may be equal to x and y respectively. 

(d) x > rY iff 3UoUl[(Uo[~<x) A (Uo/~>ul) A (uip>Y)]. 
Uo and u~ may be equal to x and y respectively. 

(19) Rennie [-5] RQt is complete for all structures such that 

(a) xRGy iff xpy 
(b) xRny iff ypx 
(c) x < TY iff xpy 
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(d) x > rY iff ypx. 

(2) QCR is complete for all structures such that 

(a) xR6y iff xfiy 

(b) xRny iff y~x 

(c) x < r y  iff x~y 

(d) x > YY iff ypx. 

(21) To get semantics for SKt + axiom (9) replace R by R in (17a) and (17b). 

(22) To get semantics for RQ~ + axiom (7) replace p by fi in (19a) and (19b). 

Before turning to the proof of the completeness theorem, we need a series of 

lemmas. 

L~MMA 23. In any structure of (19) we cannot have that xpy A ypz and ~b 

is defined at x and z and not defined at y, for any x, y, z ~ W and a sentence (p. 

PROOF. Assume that xpy and ypz, then since xpy we have that either 

xR<yVx  < y in which case by definition Lx --- Ly, or yR>x Vy > x in which 

case Ly ~_ Lx. Similarly for the case of ypz. Now since ~b is defined at x and not at 

y we get that not Ly __ Lx and so we must have that xR<y V x  < y holds. 

Similarly we get that (since ~b is defined at z and not at y) Ly ~ L, and so we 

get that zR>y Vz  > y holds. Now since (10) holds we get that in the tree W z is 

the predecessor of y, and x is the predecessor of y which is a contradiction. 

LEMMA 24. In (18c) < r  may be equivalently defined as x < r Y  iff 

3u(xRu A up<y) and similarly for (18d) x >rY iff 3u(uRx A up>y). 

PROOF. Verify that xRy iff 3u[uR>x A uR<y]. 

Let A be a complete and consistent SKt theory in the language LA, and let 

,-, Gq~ s A. Let A o be { ,~ q~} U {OlGO cA n LA4~} where LAq~ is the language 

built up from all propositional variables occurring in ~b or in any Tfl ~ A. 

LEMMA 25. A o is SKt consistent. 

PROOF Otherwise for some Ot "'" ~, we have k Ox A "'" A ~, ~q~ (n > 0 for 

otherwise k~b and so ~-G~b and since G~beLa we get that G~bEA!). So 

I- G(A 4'~ --' 4). 

Now since for each i g~i e A t3 LA~ we may conclude (by the definition of 

LA, and by axioms (2) and (3)) that Tpj c A, for each pj that occurs in ~k i and 

not in q~. 

Since ~- A Tpj ~ TG( A ~bi ~ q~) ~ (G A ~ki ~ G~b)] we get that G( A ~ki -~ ~b) 
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(G A ~ ~ G~b) • A and so since the antecedent is provable we get that G/~ ~k~ 

-~ G~b • A and since .I- A G~kl -~ G A ffi • A we get that G~b • A, which is a 

contradiction. 
This was essentially Rennie's argument. We now extend Ao to a complete 

theory A ~ in the language LA,. 

L~MMA 26. LA -- LA,. 

Proof. This is true by the definition of La~ since G~b • A and G~/, • A imply 

that ~b and ~k • La. 

Lemma 27. Let A be a complete and consistent SKt theory and let A* be 

constructed as in (25) then if Tg/• A then ~ • La,. 

PROOF. By construction. 

LEMMA 28 Rennie [51. Let A be a consistent RQt theory and let ,~ T¢ • A. 

Let A 0 = {~klG~•A~La(~)} where La(,) is the language built up from all 

propositional variables appearing in any TfleA, then A o is RQt consistent 

and ~b • LA(,). 

PROOF. This was proved by Rennie. 

(29) Since Ao is RQt consistent it can be extended to a complete and consistent 

RQ, theory A (*? We have that LA ~--LA(,). 

(30) When we deal with the logic SKt and not with an extension, we proceed 

as follows: 

Let A be a consistent SKt theory and let ,~ T¢ • A let LAc,) be the language 

built up from the propositional variables that appear in any T¢ for T~ • A. 

Let A ¢*~ be any complete and SKt consistent theory in this language. We have 

LA ~-- LA,, the proof as in the previous case. 

We can similarly construct theories A, for ~ H e  • A and A(,) for ,,~ Y¢ • A, 

for both cases, A being in SKt theory and A being an RQt theory. 

(31) We are in a position to construct, for a given theory A (either SKt or 

QK, etc. theory) a model W which will serve us in the proof of the completeness 

theorem. In the sequel we shall speak about consistent theories, it being understood 

that all the theories are in some system e.g. SKi or QKt etc. 

The elements of W are finite sequences of elements of the form ~ or ¢ or (~) 

or (q~) where ~b is a sentence of the language. With each x • W there will be 

associated a language Lx and a complete and consistent theory (in the appropriate 

logic) A(x). 
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Let A be given. Let 0 ~ W where 0 is the empty sequence and let L 0 = LA and 

A(0) = A. We continue our construction by induction. Suppose that for all 

sequences x of length < n we know whether x e W or not and that in case x ~ W 

Lx and A(x) have been defined. We now give the definitions for sequences of  

length n + 1. Let x e W of length n be given. For every q5 such that ,-~ G~b is in 

A(x) we construct a theory (A(x)) ~ and the language L(A(x))~. We let y = x*(/~) ~ W 

and let A(y )=  (A(x))* and Ly = L(A(x)), (see 25). (Where • is concatenation of 

sequences). 

Similarly for ~ Tq5 e A(x) we form y = x*((ff))  e W and Ly and A(y) = (A(x)) (~) 

(see 29, 30). 

For the cases of ~ H~b and ,-, Yq5 e A(x) we form x*(qS) and we let A(x*(qS)) 

= (A(x)), and similarly for x*((~b)). 

Let W be the set of aU sequences thus defined. Let Lx be the respective languages. 

Let A~ be defined as follows: for p ~ L~ let [P]x = 1 iff p e A(x) (p a propositional 

variable). 

We now define < ,  > ,  R<, R> as follows: 

(32) x < y = iff y = x*( (~) )  for some ~b. 

x > y  i f fy  = x*((qS)) for some ~b. 

xR<y iff y = x * ( ~ )  for some ~b. 

xR>y iff y = x*(~b) for some ~b. 

LEMMA 33. 

(a) xp*y =~ L x ~_ Ly. 

(b) Gq5 e A(x) A xR < y ~ [(o ~ L, ~ ~b e A(y)]. 

(c) TdpeA(x) A ( x R < y V x  < y ) * c ~ e L y .  

(d) The analogues of  (b) and (c) for H and Y. 

(e) In the case that A was a RQt theory then G~beA(x) and x < y and 

~b ~ Ly =~ q~ e A(y). Similarly for H. 

PROOF. By construction; for (e) see (28). 

THEOREM 34. SKt is complete for the semantics described in (17). 

Proof. One can easily verify that all SK, theorems hold in this semantics. 

Let A be a complete and consistent SKt theory, we shall show it has a model. 

Let W be the structure constructed above for A. We prove the following: 

(35) [qS], = 1 iff q5 e A(x); for q5 e Lx, and the appropriate Ra, Rn, < r ,  > r 

see (17). 
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For propositional ~b this holds by definition. 

Conjunction and negation present no difficulties. 

Assume that Tq~ ~ A(x), then by (33), 95 is defined in all worlds y such that 

x < y or xR<y.  Now suppose that yR>y;  this means that Ly___ Lx and so 

certainly q5 is defined at y and so we see that 95 is defined in all y such that 

xp<y. Conversely if ,,, T95 ~ (x) then 95 is not defined in y where y = x*((t~)). 

Assume that G95 e A(x). Let xR<y  then if q5 is defined at y this means that 

95 ~ A(y) by the construction of any (A(x)) v (see Lemma 33). Now let yR>x,  this 

means that for some ~b A(x)=  (A(y)) v. In this case q~ is certainly defined in Ly 

since Ly ___ Lx and 95 is defined in L~. Now if ,-~ 95 e A(y) then by the axioms 

H ~ G95 s A(y) and so by (33) for the case of H we get that -,~ G95 ~ A(x) which is a 

contradiction. This shows that if G95 e A(x) then q~ e A(y) for all y such that xRy .  

Conversely if ~ G95 e A(x) then ~ 95 e A(y) for y = x * (~ ) .  

The cases of Yq~ and Hq~ can be treated similarly. This concludes the proof  

of (35). 

THEOREM 36. QK t is complete for the semantics described in (18). 

PROOF. First let us show that the following holds: 

(37)xRGy ^ y <TZ ~ X <rZ 

xR~y  A y >T z ~ x > r  z. 

To prove this recall that by (18a) and (24) we have to show that x R y  A 3u 

(yRu A up<z) ~ 3v(xRv A vp<z) 

which is valid. Similarly the other implication holds. 

Let us now show that (7) holds in this semantics. Let [ ,-, T95]., = I and 

[H --, T953.~ = 0. 

Then for some y such that x <TY we have that 95 is not defined in y, and for 

some z such that z R x  we have that [T95]~ = 1. Now since we have z R x  A x <TY 

we get that z <wy which is a contradiction. Similarly the other axiom holds. 

Let A be a complete and consistent QK t theory. We want to show that A has a 

model in this semantics. To get this we repeat the construction of W as in (31) 

and we have to show that (35) holds for the appropriate RG, Ra, <r ,  > r (see 18). 

To show this all we have to show that if [T95]x = 1 and x <TY then 95 is defined at 

y (i.e. 95 ~ Ly). This is proved by induction on the length of the sequence Yl"" Yn 

leading from x to y. (See (24), recall that k is the transitive closure of R). Suppose 

that x R y  1 and (y~ < y or y lRy )  and that Tq~ e A(x). The latter implies that 95 is 
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defined at Yl. If O5 is not defined at y then ~ TO5 s A(yl) and so by the axiom, 

H ~ TO5 e A(yl) and since xRy I holds we get that ,-~ TO5 e A(x) which is impossible. 

Now assume that xRyo and that yoR n-1 u and (u < y or uRy) hold. Let 

TO5 e A(x) and assume that O5 is not defined at A(y). Then by the induction hypot- 

hesis ~ ToseA(yo) and so H~TOS~_A(yo) and so ~ TO5~A(x) which is a 

contradiction. Similar lemma holds for the case of > r. This completes the proof  

of the completeness theorem for QK,. 

THEOREM 38 Rennie [5]. RQt is complete for the semantics described in (t9). 

PROOF. One can easily verify that all the theorems of RQt hold. To get 

completeness we construct, for a given theory A the model W. To prove (35) for 

our case we use (33e). 

We are now in a position to solve an open problem of Rennie [5], namely the 

semantics for QCR. 

THEOREM 39. QCR is complete for the semantics described in (20). 

PROOF. Clearly, for transitive t7 the axiom holds. 

Let A be a consistent and complete QCR theory. We construct the model W 

(bearing in mind that RQt c_ QCR). To get completeness we have to show that 

(35) holds for p. For this we recall lemma 23. To conclude the proof  of (35) we 

have to show that if xpy and GO5 ~ A(x) n Ly then O5 ~ A(y) and similarly for TOS, 

HOS, and YOS. It is sufficient to show that if xpypz and GO5 ~ A(x)(7 L~ then 

O5 e A(z) and similarly for the case of T4  ~ A(x). 

Assume that ~ O5 e A(z) then since O5 ~ Lx n L~ by theorem (23) O5 ~ Ly and so 

since F ecR GO5-~ GGO5 we get that GGO5 ~ A(x) and so GO5 E A(y) and therefore 

¢ e A(~). 

Now assume that T~k e A(x) and that ~/ is undefined at L~. So ~ T~ e A(y) 

and hence H,,~ T~k e A(y) and therefore --~ T~ e A(x) which is a contradiction. 

This completes the proof of (39). 

2. The system St 

In this section we shall describe a basic system with a statability operator S O5 in 

which all other systems are faithfully interpretable. Our language contains besides 

the symbols for Lemmon's K t the unary operator S O5 which reads: ¢ is statable 

right now. We have the following axioms: 
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(40) Axioms (1), (4) and (5) of  SKi (see section 1). 

(41) S¢  --* Sp where p is a propositional variable occurring in ¢. 

(42) Spl /k "" /k Sp,,--,, S¢  where pl ... Pn are all the propositional variables 

occurring in ¢. 

(43) G(¢ ~ •) ~ (G¢ ~ G~b) 

g ( ¢  ~ @) --* (He  ~ H@). 

Let us now describe the semantics for which S t is complete. An St structure is a 

system (A~, L~, R, 0) 0 e W, x e W where R is a binary relation on W and A~, 

x e W is a classical propositional model in the language UL~.  The truth value of 

the operators is defined as follows: 

(45) q~ is stable at x iff q~ e Lx. 

[ s e L  = 1 ifr ¢ 

For statable G¢ and H e  we define: 

[G¢] x = 1 iff Vy(xRy => [¢ ] ,  = 1) 

[ H e ]  x = 1 iff Vy(yRx ~ [e ly  = 1). 

THEOREM 46. 

St is eomplete [br the above semantics. 

PROOF. It is easy to verify that all the axioms are valid. 

Let A be a consistent and complete S t theory. We want to define a model of A. 

To do this we can construct a model W like the one we constructed in section 1. 

We shall not go through the details but just give the crucial lemma. 

LEMMA 47. Let A be a complete and consistent theory and let ,~ G c ~  A. 

Let A o be {,-, ~b}~,.J{ff I G~JeA }, then A o is consistent. 

PROOF. Otherwise we have that for some ~kl...~k,: ~-~b 1 A "'" A ~ k n ~ ¢  so 

l- G( A @i ~ ¢), and so [- A G@i ~ G¢. 

We therefore conclude that G¢ e A which is a contradiction. 

A similar lemma holds for the case of H. 

Using these two lemmas we can carry out the proofs of the completeness 

theorem, along the lines of section 1. The only addition we need is that the language 

associated with a theory A(x) (see [31]) is the set of all ~b such that S e e A ( x ) .  

The axioms on S ensure that this is a good definition. 

The system RQt may be interpreted in St as follows: 

(48) (p).  = p for a propositional variable p. 
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(4) A @), = (4)), A (@), 

( ~  4 ) ) ,  = ~ ( 4 ) ) ,  

(G4)), = G(S4),-~ 4),) 

(n4)), = H(S4) , - .  4),) 

(T4)), = GS4), 

(Y4)), = HS4).. 

We thus see that in fact St is more basic. 

We now turn to consider modal systems with statability operators. Such 

systems were considered by Bull [3] and Segerberg [6]. Both added to the usual 

modality operator some statability operator. I would like to show how a system 

Ks may be constructed with just one modal operator G which has the properties 

of a statability operator. First let us describe the semantics of this system. 

A structure is a system (A x, Lx, R, 0) x ~ W, 0 s W where A x is a classical model 

n the language L~ and R is a binary relation on IV, the definition of the truth 

table for G is: 

(49) [G4)]~ = 1 iff for all y such that xRy and 4) is defined at y we have [4)]y = 1, 

and G4) is defined at x. 

As axioms for this logic we may take, in addition to the axioms and rules of the 

classical propositional calculus, the following axioms. 

(50) ~4) ~ FG4). 

(51) G(4) ~ ~k) ~ (G4) ~ G~) whenever every propositional variable that 

occurs in 4) occurs also in ¢. 

To prove completeness we need the following result: 

(52) Let A be a complete and consistent theory and let ~ G~k ~ A. Let LA~, be 

the language built up from all the propositional variables that occur  in ~, then 

{4)] G4) e A n LA¢}U{ ~ ~b} is consistent. 

PROOF. Otherwise for some 4)~ 

k G( A 4), -," ¢ )  

k ~(4)~ ~ (4)~ --, . . .  --,  ¢ ) . . . )  

and  so I- G4)x ~ (G4)2 ..e ... ~ G ~ ) . - . )  

and so Gd/~ A which is a contradictio~ 
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3. Decidability results 

Rather than repeat all the constructions in part 1 [2] we shall assume that the 

reader is familiar with [4] and [2]. From the results of [4] it follows that (53) 

holds. 

THEOREM 53 (Rabin). The monadic second order theory of a denumerable 

system of the form (W, <, >, R<, R>, R<, _P,>, p<, p>, p<, p>, O) is decidable. 

Where W is a tree as in section 1. 

From the results in [2] it follows that any system whose semantics has an 

accessibility relation R o, Rm <r ,  > r that can be expressed in the above monadic 

2nd order theory and is finitely many valued is decidable. Now by theorem (16) 

we see that systems have this property. Each propositional variable has as assign- 

ment a pair of subsets of W, the set of points at which it is true, and the set of 

points at which it is false respectively. The complement of the union of these sets 

is the set of all points at which it is undefined. 

We therefore conclude. 

THEOREM 54 Decidability Theorem. The systems SKt, RKt, QK t, QCR, S t 

and the other systems of(16) are decidable and so is K s. 
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